Nuprl Lemma : div_rem_sum

[a:ℤ]. ∀[n:ℤ-o].  (a (((a ÷ n) n) (a rem n)) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] remainder: rem m divide: n ÷ m multiply: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] int_nzero: -o all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a nequal: a ≠ b ∈  or: P ∨ Q guard: {T} le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True false: False subtract: m subtype_rel: A ⊆B top: Top bfalse: ff exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q prop:
Lemmas referenced :  int_nzero_wf eq_int_wf eqtt_to_assert assert_of_eq_int not-equal-2 le_antisymmetry_iff add_functionality_wrt_le zero-add add-zero le-add-cancel condition-implies-le add-commutes istype-void minus-add minus-zero eqff_to_assert set_subtype_base nequal_wf int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf iff_transitivity assert_wf bnot_wf not_wf equal-wf-base iff_weakening_uiff assert_of_bnot false_wf
Rules used in proof :  intEquality because_Cache axiomEquality hypothesisEquality thin isectElimination isect_memberEquality sqequalHypSubstitution sqequalRule extract_by_obid hypothesis cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution divideRemainderSum setElimination rename natural_numberEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination productElimination independent_isectElimination int_eqReduceTrueSq dependent_functionElimination addEquality independent_functionElimination voidElimination minusEquality applyEquality Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :universeIsType,  Error :dependent_pairFormation_alt,  equalityTransitivity equalitySymmetry Error :equalityIsType4,  baseApply closedConclusion baseClosed promote_hyp instantiate cumulativity independent_pairFormation Error :functionIsType,  int_eqReduceFalseSq Error :equalityIsType1

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (a  =  (((a  \mdiv{}  n)  *  n)  +  (a  rem  n)))



Date html generated: 2019_06_20-AM-11_23_57
Last ObjectModification: 2018_10_15-PM-00_14_22

Theory : arithmetic


Home Index