Nuprl Lemma : mul_nat_plus

[a,b:ℕ+].  (a b ∈ ℕ+)


Proof




Definitions occuring in Statement :  nat_plus: + uall: [x:A]. B[x] member: t ∈ T multiply: m
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + prop:
Lemmas referenced :  mul_bounds_1b less_than_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality multiplyEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality lemma_by_obid isectElimination hypothesis natural_numberEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[a,b:\mBbbN{}\msupplus{}].    (a  *  b  \mmember{}  \mBbbN{}\msupplus{})



Date html generated: 2016_05_14-AM-07_20_36
Last ObjectModification: 2015_12_26-PM-01_32_16

Theory : int_2


Home Index