Nuprl Lemma : mul_nat_plus
∀[a,b:ℕ+]. (a * b ∈ ℕ+)
Proof
Definitions occuring in Statement :
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
multiply: n * m
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat_plus: ℕ+
,
prop: ℙ
Lemmas referenced :
mul_bounds_1b,
less_than_wf,
nat_plus_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
dependent_set_memberEquality,
multiplyEquality,
sqequalHypSubstitution,
setElimination,
thin,
rename,
hypothesisEquality,
lemma_by_obid,
isectElimination,
hypothesis,
natural_numberEquality,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[a,b:\mBbbN{}\msupplus{}]. (a * b \mmember{} \mBbbN{}\msupplus{})
Date html generated:
2016_05_14-AM-07_20_36
Last ObjectModification:
2015_12_26-PM-01_32_16
Theory : int_2
Home
Index