Nuprl Lemma : l_sum_cons_lemma
∀L,a:Top.  (l_sum([a / L]) ~ a + l_sum(L))
Proof
Definitions occuring in Statement : 
l_sum: l_sum(L)
, 
cons: [a / b]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
add: n + m
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
l_sum: l_sum(L)
, 
top: Top
Lemmas referenced : 
top_wf, 
reduce_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}L,a:Top.    (l\_sum([a  /  L])  \msim{}  a  +  l\_sum(L))
Date html generated:
2016_05_14-PM-02_52_31
Last ObjectModification:
2015_12_26-PM-02_34_28
Theory : list_1
Home
Index