Nuprl Lemma : l_sum_cons_lemma
∀L,a:Top. (l_sum([a / L]) ~ a + l_sum(L))
Proof
Definitions occuring in Statement :
l_sum: l_sum(L)
,
cons: [a / b]
,
top: Top
,
all: ∀x:A. B[x]
,
add: n + m
,
sqequal: s ~ t
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
l_sum: l_sum(L)
,
top: Top
Lemmas referenced :
top_wf,
reduce_cons_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
hypothesis,
lemma_by_obid,
sqequalRule,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality
Latex:
\mforall{}L,a:Top. (l\_sum([a / L]) \msim{} a + l\_sum(L))
Date html generated:
2016_05_14-PM-02_52_31
Last ObjectModification:
2015_12_26-PM-02_34_28
Theory : list_1
Home
Index