Nuprl Lemma : bdd-diff_weakening

a,b:ℕ+ ⟶ ℤ.  ((a b ∈ (ℕ+ ⟶ ℤ))  bdd-diff(a;b))


Proof




Definitions occuring in Statement :  bdd-diff: bdd-diff(f;g) nat_plus: + all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  bdd-diff-equiv equal_wf nat_plus_wf and_wf bdd-diff_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution isectElimination thin functionEquality hypothesis intEquality functionExtensionality applyEquality hypothesisEquality productElimination dependent_functionElimination hyp_replacement equalitySymmetry sqequalRule dependent_set_memberEquality independent_pairFormation lambdaEquality setElimination rename setEquality

Latex:
\mforall{}a,b:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    ((a  =  b)  {}\mRightarrow{}  bdd-diff(a;b))



Date html generated: 2016_10_26-AM-09_02_40
Last ObjectModification: 2016_07_12-AM-08_12_39

Theory : reals


Home Index