Nuprl Lemma : bdd-diff_functionality

x1,x2,y1,y2:ℕ+ ⟶ ℤ.  (bdd-diff(x1;x2)  bdd-diff(y1;y2)  (bdd-diff(x1;y1) ⇐⇒ bdd-diff(x2;y2)))


Proof




Definitions occuring in Statement :  bdd-diff: bdd-diff(f;g) nat_plus: + all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q equiv_rel: EquivRel(T;x,y.E[x; y]) member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q trans: Trans(T;x,y.E[x; y]) guard: {T} sym: Sym(T;x,y.E[x; y])
Lemmas referenced :  bdd-diff-equiv bdd-diff_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution productElimination thin isectElimination hypothesisEquality hypothesis functionEquality intEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}x1,x2,y1,y2:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (bdd-diff(x1;x2)  {}\mRightarrow{}  bdd-diff(y1;y2)  {}\mRightarrow{}  (bdd-diff(x1;y1)  \mLeftarrow{}{}\mRightarrow{}  bdd-diff(x2;y2)))



Date html generated: 2016_05_18-AM-06_46_32
Last ObjectModification: 2015_12_28-AM-00_24_51

Theory : reals


Home Index