Nuprl Lemma : rnonneg_wf
∀[x:ℕ+ ⟶ ℤ]. (rnonneg(x) ∈ ℙ)
Proof
Definitions occuring in Statement :
rnonneg: rnonneg(x)
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
rnonneg: rnonneg(x)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
all_wf,
nat_plus_wf,
le_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
lambdaEquality,
minusEquality,
natural_numberEquality,
applyEquality,
hypothesisEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
intEquality
Latex:
\mforall{}[x:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}]. (rnonneg(x) \mmember{} \mBbbP{})
Date html generated:
2016_05_18-AM-07_01_20
Last ObjectModification:
2015_12_28-AM-00_33_40
Theory : reals
Home
Index