Nuprl Lemma : rnonneg_functionality
∀x,y:ℝ.  rnonneg(x) ⇐⇒ rnonneg(y) supposing x = y
Proof
Definitions occuring in Statement : 
rnonneg: rnonneg(x), 
req: x = y, 
real: ℝ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
req: x = y, 
bdd-diff: bdd-diff(f;g), 
exists: ∃x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
real: ℝ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rnonneg: rnonneg(x)
Lemmas referenced : 
false_wf, 
le_wf, 
all_wf, 
nat_plus_wf, 
absval_wf, 
subtract_wf, 
nat_wf, 
rnonneg2_wf, 
rnonneg2_functionality, 
iff_wf, 
rnonneg-iff, 
rnonneg_wf, 
less_than'_wf, 
req_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
addLevel, 
productElimination, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairEquality, 
voidElimination, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x,y:\mBbbR{}.    rnonneg(x)  \mLeftarrow{}{}\mRightarrow{}  rnonneg(y)  supposing  x  =  y
Date html generated:
2016_05_18-AM-07_01_44
Last ObjectModification:
2015_12_28-AM-00_34_00
Theory : reals
Home
Index