Nuprl Lemma : rnonneg_functionality

x,y:ℝ.  rnonneg(x) ⇐⇒ rnonneg(y) supposing y


Proof




Definitions occuring in Statement :  rnonneg: rnonneg(x) req: y real: uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T req: y bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] real: subtype_rel: A ⊆B so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q rnonneg: rnonneg(x)
Lemmas referenced :  false_wf le_wf all_wf nat_plus_wf absval_wf subtract_wf nat_wf rnonneg2_wf rnonneg2_functionality iff_wf rnonneg-iff rnonneg_wf less_than'_wf req_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution dependent_pairFormation dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation hypothesis lemma_by_obid isectElimination thin hypothesisEquality lambdaEquality applyEquality setElimination rename because_Cache addLevel productElimination impliesFunctionality dependent_functionElimination independent_functionElimination independent_pairEquality voidElimination minusEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}x,y:\mBbbR{}.    rnonneg(x)  \mLeftarrow{}{}\mRightarrow{}  rnonneg(y)  supposing  x  =  y



Date html generated: 2016_05_18-AM-07_01_44
Last ObjectModification: 2015_12_28-AM-00_34_00

Theory : reals


Home Index