Nuprl Lemma : rnonneg_functionality
∀x,y:ℝ.  rnonneg(x) 
⇐⇒ rnonneg(y) supposing x = y
Proof
Definitions occuring in Statement : 
rnonneg: rnonneg(x)
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
req: x = y
, 
bdd-diff: bdd-diff(f;g)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rnonneg: rnonneg(x)
Lemmas referenced : 
false_wf, 
le_wf, 
all_wf, 
nat_plus_wf, 
absval_wf, 
subtract_wf, 
nat_wf, 
rnonneg2_wf, 
rnonneg2_functionality, 
iff_wf, 
rnonneg-iff, 
rnonneg_wf, 
less_than'_wf, 
req_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
addLevel, 
productElimination, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairEquality, 
voidElimination, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x,y:\mBbbR{}.    rnonneg(x)  \mLeftarrow{}{}\mRightarrow{}  rnonneg(y)  supposing  x  =  y
Date html generated:
2016_05_18-AM-07_01_44
Last ObjectModification:
2015_12_28-AM-00_34_00
Theory : reals
Home
Index