Nuprl Lemma : rnonneg2_functionality

x,y:ℕ+ ⟶ ℤ.  (bdd-diff(x;y)  (rnonneg2(x) ⇐⇒ rnonneg2(y)))


Proof




Definitions occuring in Statement :  rnonneg2: rnonneg2(x) bdd-diff: bdd-diff(f;g) nat_plus: + all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q bdd-diff: bdd-diff(f;g) exists: x:A. B[x] rnonneg2: rnonneg2(x) member: t ∈ T prop: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True nat: so_lambda: λ2x.t[x] int_upper: {i...} le: A ≤ B uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B sq_type: SQType(T) ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top cand: c∧ B uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_plus_wf rnonneg2_wf bdd-diff_wf bdd-diff_inversion mul_nat_plus less_than_wf int_upper_wf imax_wf all_wf le_wf less_than_transitivity1 subtype_base_sq int_subtype_base equal_wf squash_wf true_wf imax_com iff_weakening_equal imax_nat_plus nat_plus_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf imax_ub int_upper_properties decidable__le intformle_wf int_formula_prop_le_lemma itermMultiply_wf int_term_value_mul_lemma int_upper_subtype_int_upper absval_ifthenelse subtract_wf lt_int_wf subtract-is-int-iff multiply-is-int-iff itermSubtract_wf int_term_value_subtract_lemma false_wf assert_wf bnot_wf not_wf minus-is-int-iff itermMinus_wf int_term_value_minus_lemma bool_cases bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot mul_preserves_le nat_plus_subtype_nat le_functionality le_weakening
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin introduction extract_by_obid hypothesis isectElimination functionExtensionality applyEquality hypothesisEquality functionEquality intEquality independent_pairFormation dependent_functionElimination independent_functionElimination dependent_set_memberEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed dependent_pairFormation setElimination rename multiplyEquality because_Cache lambdaEquality minusEquality independent_isectElimination instantiate cumulativity imageElimination equalityTransitivity equalitySymmetry universeEquality applyLambdaEquality unionElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll inlFormation inrFormation pointwiseFunctionality promote_hyp baseApply closedConclusion impliesFunctionality

Latex:
\mforall{}x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (bdd-diff(x;y)  {}\mRightarrow{}  (rnonneg2(x)  \mLeftarrow{}{}\mRightarrow{}  rnonneg2(y)))



Date html generated: 2017_10_03-AM-08_23_36
Last ObjectModification: 2017_07_28-AM-07_22_57

Theory : reals


Home Index