Nuprl Lemma : absval_ifthenelse

[x:ℤ]. (|x| if 0 <then else -x fi )


Proof




Definitions occuring in Statement :  absval: |i| ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] minus: -n natural_number: $n int: sqequal: t
Definitions unfolded in proof :  absval: |i| uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  value-type-has-value int-value-type lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality natural_numberEquality lambdaFormation unionElimination equalityElimination because_Cache productElimination lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate cumulativity

Latex:
\mforall{}[x:\mBbbZ{}].  (|x|  \msim{}  if  0  <z  x  then  x  else  -x  fi  )



Date html generated: 2017_04_14-AM-07_33_13
Last ObjectModification: 2017_02_27-PM-03_07_12

Theory : int_1


Home Index