Nuprl Lemma : absval_ifthenelse
∀[x:ℤ]. (|x| ~ if 0 <z x then x else -x fi )
Proof
Definitions occuring in Statement : 
absval: |i|, 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
uall: ∀[x:A]. B[x], 
minus: -n, 
natural_number: $n, 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
absval: |i|, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
has-value: (a)↓, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
prop: ℙ, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
lessCases, 
sqequalAxiom, 
isect_memberEquality, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity
Latex:
\mforall{}[x:\mBbbZ{}].  (|x|  \msim{}  if  0  <z  x  then  x  else  -x  fi  )
Date html generated:
2017_04_14-AM-07_33_13
Last ObjectModification:
2017_02_27-PM-03_07_12
Theory : int_1
Home
Index