Step
*
of Lemma
rnonneg2_functionality
∀x,y:ℕ+ ⟶ ℤ. (bdd-diff(x;y)
⇒ (rnonneg2(x)
⇐⇒ rnonneg2(y)))
BY
{ (Assert ⌜∀x,y:ℕ+ ⟶ ℤ. (bdd-diff(x;y)
⇒ rnonneg2(x)
⇒ rnonneg2(y))⌝⋅
THEN Auto
THEN Try (((InstHyp [⌜y⌝;⌜x⌝] 1⋅ THEN Auto) THEN RelRST THEN Auto))
THEN D -2
THEN All (Unfold `rnonneg2`)
THEN Auto) }
1
1. x : ℕ+ ⟶ ℤ
2. y : ℕ+ ⟶ ℤ
3. B : ℕ
4. ∀n:ℕ+. (|(x n) - y n| ≤ B)
5. ∀n:ℕ+. ∃N:ℕ+. ∀m:{N...}. (((-2) * m) ≤ (n * (x m)))
6. n : ℕ+
⊢ ∃N:ℕ+. ∀m:{N...}. (((-2) * m) ≤ (n * (y m)))
Latex:
Latex:
\mforall{}x,y:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}. (bdd-diff(x;y) {}\mRightarrow{} (rnonneg2(x) \mLeftarrow{}{}\mRightarrow{} rnonneg2(y)))
By
Latex:
(Assert \mkleeneopen{}\mforall{}x,y:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}. (bdd-diff(x;y) {}\mRightarrow{} rnonneg2(x) {}\mRightarrow{} rnonneg2(y))\mkleeneclose{}\mcdot{}
THEN Auto
THEN Try (((InstHyp [\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}] 1\mcdot{} THEN Auto) THEN RelRST THEN Auto))
THEN D -2
THEN All (Unfold `rnonneg2`)
THEN Auto)
Home
Index