Nuprl Lemma : rnonneg-iff

[x:ℝ]. (rnonneg(x) ⇐⇒ rnonneg2(x))


Proof




Definitions occuring in Statement :  rnonneg2: rnonneg2(x) rnonneg: rnonneg(x) real: uall: [x:A]. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  rnonneg2: rnonneg2(x) uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] member: t ∈ T prop: real: rev_implies:  Q rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False so_lambda: λ2x.t[x] nat_plus: + int_upper: {i...} guard: {T} uimplies: supposing a so_apply: x[s] exists: x:A. B[x] subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rev_uimplies: rev_uimplies(P;Q) ge: i ≥  sq_stable: SqStable(P) regular-int-seq: k-regular-seq(f) nat: less_than': less_than'(a;b) uiff: uiff(P;Q) squash: T pi1: fst(t) subtract: m less_than: a < b true: True
Lemmas referenced :  mul_preserves_lt imax_strict_ub mul_nat_plus imax_ub imax_wf add-swap add-commutes mul-commutes mul-swap minus-one-mul minus-add mul-associates mul-distributes equal_wf int_term_value_add_lemma itermAdd_wf subtract-is-int-iff add-is-int-iff multiply-is-int-iff int_subtype_base minus-is-int-iff int_upper_subtype_nat add_nat_wf false_wf mul_bounds_1a subtract_wf absval_ubound int_formula_prop_less_lemma intformless_wf decidable__lt subtype_rel_sets sq_stable__le le_weakening le_functionality int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf itermMultiply_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties int_upper_properties nat_plus_subtype_nat mul_preserves_le real_wf less_than_wf less_than_transitivity1 le_wf int_upper_wf exists_wf all_wf less_than'_wf rnonneg_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation lambdaFormation cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality introduction lambdaEquality dependent_functionElimination productElimination independent_pairEquality voidElimination applyEquality minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache multiplyEquality dependent_set_memberEquality independent_isectElimination dependent_pairFormation unionElimination int_eqEquality intEquality isect_memberEquality voidEquality computeAll promote_hyp addEquality independent_functionElimination setEquality imageMemberEquality baseClosed imageElimination baseApply closedConclusion pointwiseFunctionality inrFormation inlFormation

Latex:
\mforall{}[x:\mBbbR{}].  (rnonneg(x)  \mLeftarrow{}{}\mRightarrow{}  rnonneg2(x))



Date html generated: 2016_05_18-AM-07_01_40
Last ObjectModification: 2016_01_17-AM-01_49_41

Theory : reals


Home Index