Nuprl Lemma : imax_strict_ub

a,b,c:ℤ.  (a < imax(b;c) ⇐⇒ a < b ∨ a < c)


Proof




Definitions occuring in Statement :  imax: imax(a;b) less_than: a < b all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop:
Lemmas referenced :  or_wf imax_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_formual_prop_imp_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_or_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf intformle_wf intformimplies_wf itermVar_wf intformless_wf intformor_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt less_than_wf decidable__or imax_ub
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin addEquality hypothesisEquality natural_numberEquality hypothesis productElimination independent_pairFormation sqequalRule isectElimination independent_functionElimination because_Cache unionElimination imageElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}a,b,c:\mBbbZ{}.    (a  <  imax(b;c)  \mLeftarrow{}{}\mRightarrow{}  a  <  b  \mvee{}  a  <  c)



Date html generated: 2016_05_14-AM-07_22_05
Last ObjectModification: 2016_01_07-PM-04_00_38

Theory : int_2


Home Index