Nuprl Lemma : mul_bounds_1a
∀[a,b:ℕ].  (0 ≤ (a * b))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
multiply: n * m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat: ℕ
, 
prop: ℙ
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
top: Top
, 
uiff: uiff(P;Q)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
less_than'_wf, 
nat_wf, 
multiply-is-int-iff, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
mul-commutes, 
zero-mul, 
mul_preserves_le, 
sq_stable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
multiplyEquality, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
voidElimination, 
Error :universeIsType, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
independent_isectElimination, 
lemma_by_obid, 
voidEquality, 
intEquality, 
applyEquality, 
closedConclusion, 
baseApply
Latex:
\mforall{}[a,b:\mBbbN{}].    (0  \mleq{}  (a  *  b))
Date html generated:
2019_06_20-AM-11_26_39
Last ObjectModification:
2018_09_26-AM-10_58_35
Theory : arithmetic
Home
Index