Nuprl Lemma : mul_bounds_1a

[a,b:ℕ].  (0 ≤ (a b))


Proof




Definitions occuring in Statement :  nat: uall: [x:A]. B[x] le: A ≤ B multiply: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False nat: prop: squash: T sq_stable: SqStable(P) uimplies: supposing a top: Top uiff: uiff(P;Q) so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B
Lemmas referenced :  less_than'_wf nat_wf multiply-is-int-iff set_subtype_base le_wf int_subtype_base mul-commutes zero-mul mul_preserves_le sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination multiplyEquality setElimination rename hypothesis natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality voidElimination Error :universeIsType,  imageElimination baseClosed imageMemberEquality independent_functionElimination independent_isectElimination lemma_by_obid voidEquality intEquality applyEquality closedConclusion baseApply

Latex:
\mforall{}[a,b:\mBbbN{}].    (0  \mleq{}  (a  *  b))



Date html generated: 2019_06_20-AM-11_26_39
Last ObjectModification: 2018_09_26-AM-10_58_35

Theory : arithmetic


Home Index