Nuprl Lemma : path-at_functionality
∀[X:SeparationSpace]. ∀[p:Point(Path(X))]. ∀[t,t':{t:ℝ| t ∈ [r0, r1]} ].  p@t ≡ p@t' supposing t = t'
Proof
Definitions occuring in Statement : 
path-at: p@t
, 
path-ss: Path(X)
, 
ss-eq: x ≡ y
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
top: Top
, 
path-at: p@t
, 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
Lemmas referenced : 
path-ss-point, 
sq_stable__ss-eq, 
member_rccint_lemma, 
ss-sep_wf, 
path-at_wf, 
req_wf, 
set_wf, 
real_wf, 
i-member_wf, 
rccint_wf, 
int-to-real_wf, 
ss-point_wf, 
path-ss_wf, 
separation-space_wf, 
unit-ss-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[p:Point(Path(X))].  \mforall{}[t,t':\{t:\mBbbR{}|  t  \mmember{}  [r0,  r1]\}  ].    p@t  \mequiv{}  p@t'  supposing  t  =  t\000C'
Date html generated:
2020_05_20-PM-01_20_17
Last ObjectModification:
2018_07_03-PM-05_13_04
Theory : intuitionistic!topology
Home
Index