Nuprl Lemma : sq_stable__ss-eq

[ss:SeparationSpace]. ∀[x,y:Point].  SqStable(x ≡ y)


Proof




Definitions occuring in Statement :  ss-eq: x ≡ y ss-point: Point separation-space: SeparationSpace sq_stable: SqStable(P) uall: [x:A]. B[x]
Definitions unfolded in proof :  prop: false: False not: ¬A ss-eq: x ≡ y sq_stable: SqStable(P) implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-point_wf squash_wf ss-sep_wf stable__ss-eq ss-eq_wf sq_stable__from_stable
Rules used in proof :  voidElimination isect_memberEquality because_Cache dependent_functionElimination lambdaEquality sqequalRule independent_functionElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[x,y:Point].    SqStable(x  \mequiv{}  y)



Date html generated: 2016_11_08-AM-09_11_01
Last ObjectModification: 2016_10_31-PM-01_50_33

Theory : inner!product!spaces


Home Index