Nuprl Lemma : sq_stable__ss-eq
∀[ss:SeparationSpace]. ∀[x,y:Point].  SqStable(x ≡ y)
Proof
Definitions occuring in Statement : 
ss-eq: x ≡ y
, 
ss-point: Point
, 
separation-space: SeparationSpace
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
ss-eq: x ≡ y
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
ss-point_wf, 
squash_wf, 
ss-sep_wf, 
stable__ss-eq, 
ss-eq_wf, 
sq_stable__from_stable
Rules used in proof : 
voidElimination, 
isect_memberEquality, 
because_Cache, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[x,y:Point].    SqStable(x  \mequiv{}  y)
Date html generated:
2016_11_08-AM-09_11_01
Last ObjectModification:
2016_10_31-PM-01_50_33
Theory : inner!product!spaces
Home
Index