Nuprl Lemma : sq_stable__from_stable

[P:ℙ]. (Stable{P}  SqStable(P))


Proof




Definitions occuring in Statement :  sq_stable: SqStable(P) stable: Stable{P} uall: [x:A]. B[x] prop: implies:  Q
Definitions unfolded in proof :  sq_stable: SqStable(P) stable: Stable{P} uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] squash: T not: ¬A false: False
Lemmas referenced :  squash_wf isect_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality Error :universeIsType,  universeEquality independent_isectElimination imageElimination independent_functionElimination voidElimination

Latex:
\mforall{}[P:\mBbbP{}].  (Stable\{P\}  {}\mRightarrow{}  SqStable(P))



Date html generated: 2019_06_20-AM-11_15_31
Last ObjectModification: 2018_09_26-AM-10_23_44

Theory : core_2


Home Index