Nuprl Lemma : stable__ss-eq

[ss:SeparationSpace]. ∀[x,y:Point].  Stable{x ≡ y}


Proof




Definitions occuring in Statement :  ss-eq: x ≡ y ss-point: Point separation-space: SeparationSpace stable: Stable{P} uall: [x:A]. B[x]
Definitions unfolded in proof :  prop: false: False implies:  Q not: ¬A uimplies: supposing a stable: Stable{P} member: t ∈ T uall: [x:A]. B[x] ss-eq: x ≡ y
Lemmas referenced :  separation-space_wf ss-point_wf not_wf ss-sep_wf stable__not
Rules used in proof :  voidElimination equalitySymmetry equalityTransitivity because_Cache dependent_functionElimination lambdaEquality isect_memberEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[x,y:Point].    Stable\{x  \mequiv{}  y\}



Date html generated: 2016_11_08-AM-09_10_59
Last ObjectModification: 2016_10_31-PM-01_50_03

Theory : inner!product!spaces


Home Index