Nuprl Lemma : stable__ss-eq
∀[ss:SeparationSpace]. ∀[x,y:Point].  Stable{x ≡ y}
Proof
Definitions occuring in Statement : 
ss-eq: x ≡ y
, 
ss-point: Point
, 
separation-space: SeparationSpace
, 
stable: Stable{P}
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
prop: ℙ
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
stable: Stable{P}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
ss-eq: x ≡ y
Lemmas referenced : 
separation-space_wf, 
ss-point_wf, 
not_wf, 
ss-sep_wf, 
stable__not
Rules used in proof : 
voidElimination, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
dependent_functionElimination, 
lambdaEquality, 
isect_memberEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[x,y:Point].    Stable\{x  \mequiv{}  y\}
Date html generated:
2016_11_08-AM-09_10_59
Last ObjectModification:
2016_10_31-PM-01_50_03
Theory : inner!product!spaces
Home
Index