Nuprl Lemma : ss-sep_wf

[ss:SeparationSpace]. ∀[x,y:Point].  (x y ∈ ℙ)


Proof




Definitions occuring in Statement :  ss-sep: y ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  ss-point: Point ss-sep: y or: P ∨ Q all: x:A. B[x] implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] prop: guard: {T} btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ separation-space: SeparationSpace member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-point_wf or_wf not_wf all_wf subtype_rel_self
Rules used in proof :  isect_memberEquality axiomEquality rename setElimination functionExtensionality because_Cache hypothesisEquality cumulativity lambdaEquality equalitySymmetry equalityTransitivity functionEquality setEquality universeEquality isectElimination extract_by_obid instantiate tokenEquality applyEquality hypothesis thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[x,y:Point].    (x  \#  y  \mmember{}  \mBbbP{})



Date html generated: 2016_11_08-AM-09_10_45
Last ObjectModification: 2016_10_31-AM-11_01_04

Theory : inner!product!spaces


Home Index