Nuprl Lemma : ss-eq_wf
∀[ss:SeparationSpace]. ∀[x,y:Point].  (x ≡ y ∈ ℙ)
Proof
Definitions occuring in Statement : 
ss-eq: x ≡ y
, 
ss-point: Point
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
ss-eq: x ≡ y
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
ss-point_wf, 
ss-sep_wf, 
not_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[x,y:Point].    (x  \mequiv{}  y  \mmember{}  \mBbbP{})
Date html generated:
2016_11_08-AM-09_10_58
Last ObjectModification:
2016_10_31-AM-11_06_42
Theory : inner!product!spaces
Home
Index