Nuprl Lemma : ss-eq_wf

[ss:SeparationSpace]. ∀[x,y:Point].  (x ≡ y ∈ ℙ)


Proof




Definitions occuring in Statement :  ss-eq: x ≡ y ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  ss-eq: x ≡ y member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-point_wf ss-sep_wf not_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[x,y:Point].    (x  \mequiv{}  y  \mmember{}  \mBbbP{})



Date html generated: 2016_11_08-AM-09_10_58
Last ObjectModification: 2016_10_31-AM-11_06_42

Theory : inner!product!spaces


Home Index