Nuprl Lemma : unit-ss-eq
∀[t,t':{t:ℝ| t ∈ [r0, r1]} ].  uiff(t = t';t ≡ t')
Proof
Definitions occuring in Statement : 
unit-ss: 𝕀
, 
ss-eq: x ≡ y
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
unit-ss: 𝕀
, 
ss-eq: x ≡ y
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
real-ss: ℝ
, 
set-ss: {x:ss | P[x]}
, 
ss-sep: x # y
, 
mk-ss: Point=P #=Sep cotrans=C
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
member_rccint_lemma, 
rec_select_update_lemma, 
rneq_irrefl, 
rneq_functionality, 
req_weakening, 
req_inversion, 
rneq_wf, 
req_wf, 
req_witness, 
istype-void, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req-iff-not-rneq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :memTop, 
hypothesis, 
isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
setElimination, 
rename, 
productElimination, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
universeIsType, 
voidElimination, 
lambdaEquality_alt, 
functionIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
setIsType, 
productIsType, 
natural_numberEquality
Latex:
\mforall{}[t,t':\{t:\mBbbR{}|  t  \mmember{}  [r0,  r1]\}  ].    uiff(t  =  t';t  \mequiv{}  t')
Date html generated:
2020_05_20-PM-01_20_07
Last ObjectModification:
2020_01_06-PM-05_14_29
Theory : intuitionistic!topology
Home
Index