Nuprl Lemma : unit-ss-eq

[t,t':{t:ℝt ∈ [r0, r1]} ].  uiff(t t';t ≡ t')


Proof




Definitions occuring in Statement :  unit-ss: 𝕀 ss-eq: x ≡ y rccint: [l, u] i-member: r ∈ I req: y int-to-real: r(n) real: uiff: uiff(P;Q) uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  unit-ss: 𝕀 ss-eq: x ≡ y all: x:A. B[x] member: t ∈ T real-ss: set-ss: {x:ss P[x]} ss-sep: y mk-ss: Point=P #=Sep cotrans=C eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False iff: ⇐⇒ Q prop: rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  member_rccint_lemma rec_select_update_lemma rneq_irrefl rneq_functionality req_weakening req_inversion rneq_wf req_wf req_witness istype-void real_wf rleq_wf int-to-real_wf req-iff-not-rneq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis isect_memberFormation_alt independent_pairFormation lambdaFormation_alt setElimination rename productElimination isectElimination hypothesisEquality independent_functionElimination because_Cache independent_isectElimination universeIsType voidElimination lambdaEquality_alt functionIsTypeImplies inhabitedIsType functionIsType independent_pairEquality isect_memberEquality_alt isectIsTypeImplies setIsType productIsType natural_numberEquality

Latex:
\mforall{}[t,t':\{t:\mBbbR{}|  t  \mmember{}  [r0,  r1]\}  ].    uiff(t  =  t';t  \mequiv{}  t')



Date html generated: 2020_05_20-PM-01_20_07
Last ObjectModification: 2020_01_06-PM-05_14_29

Theory : intuitionistic!topology


Home Index