Nuprl Lemma : rneq_functionality
∀x1,x2,y1,y2:ℝ.  (x1 ≠ y1 
⇐⇒ x2 ≠ y2) supposing ((y1 = y2) and (x1 = x2))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
Lemmas referenced : 
req_witness, 
req_wf, 
real_wf, 
or_wf, 
rless_wf, 
iff_wf, 
rless_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
independent_pairFormation, 
because_Cache, 
addLevel, 
productElimination, 
impliesFunctionality, 
orFunctionality, 
dependent_functionElimination, 
independent_isectElimination, 
orLevelFunctionality
Latex:
\mforall{}x1,x2,y1,y2:\mBbbR{}.    (x1  \mneq{}  y1  \mLeftarrow{}{}\mRightarrow{}  x2  \mneq{}  y2)  supposing  ((y1  =  y2)  and  (x1  =  x2))
Date html generated:
2016_05_18-AM-07_10_32
Last ObjectModification:
2015_12_28-AM-00_38_44
Theory : reals
Home
Index