Nuprl Lemma : member_rccint_lemma
∀r,u,l:Top.  (r ∈ [l, u] ~ (l ≤ r) ∧ (r ≤ u))
Proof
Definitions occuring in Statement : 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
top: Top
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
rccint: [l, u]
, 
i-member: r ∈ I
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}r,u,l:Top.    (r  \mmember{}  [l,  u]  \msim{}  (l  \mleq{}  r)  \mwedge{}  (r  \mleq{}  u))
Date html generated:
2016_05_18-AM-08_20_04
Last ObjectModification:
2015_12_27-PM-11_55_54
Theory : reals
Home
Index