Nuprl Lemma : rneq_irrefl
∀[e:ℝ]. (¬e ≠ e)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
prop: ℙ
, 
uimplies: b supposing a
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
real_wf, 
rneq_wf, 
rneq_irreflexivity
Rules used in proof : 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
thin, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[e:\mBbbR{}].  (\mneg{}e  \mneq{}  e)
Date html generated:
2018_07_29-AM-09_39_44
Last ObjectModification:
2018_06_29-PM-00_07_56
Theory : reals
Home
Index