Nuprl Lemma : rneq_irrefl

[e:ℝ]. e ≠ e)


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  prop: uimplies: supposing a false: False implies:  Q not: ¬A member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  real_wf rneq_wf rneq_irreflexivity
Rules used in proof :  dependent_functionElimination lambdaEquality sqequalRule independent_functionElimination because_Cache voidElimination hypothesis independent_isectElimination hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid thin lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:\mBbbR{}].  (\mneg{}e  \mneq{}  e)



Date html generated: 2018_07_29-AM-09_39_44
Last ObjectModification: 2018_06_29-PM-00_07_56

Theory : reals


Home Index