Nuprl Lemma : rneq_wf

[x,y:ℝ].  (x ≠ y ∈ ℙ)


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rneq: x ≠ y
Lemmas referenced :  or_wf rless_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[x,y:\mBbbR{}].    (x  \mneq{}  y  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_10_22
Last ObjectModification: 2015_12_28-AM-00_38_34

Theory : reals


Home Index