Nuprl Lemma : rneq_wf
∀[x,y:ℝ].  (x ≠ y ∈ ℙ)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rneq: x ≠ y
Lemmas referenced : 
or_wf, 
rless_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbR{}].    (x  \mneq{}  y  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-07_10_22
Last ObjectModification:
2015_12_28-AM-00_38_34
Theory : reals
Home
Index