Nuprl Lemma : ss-eq_functionality
∀ss:SeparationSpace. ∀x1,x2,y1,y2:Point.  (uiff(x1 ≡ y1;x2 ≡ y2)) supposing (y1 ≡ y2 and x1 ≡ x2)
Proof
Definitions occuring in Statement : 
ss-eq: x ≡ y
, 
ss-point: Point
, 
separation-space: SeparationSpace
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
not: ¬A
, 
ss-eq: x ≡ y
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
separation-space_wf, 
ss-point_wf, 
ss-eq_wf, 
ss-sep_wf, 
ss-eq_transitivity, 
ss-eq_inversion
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
voidElimination, 
isectElimination, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x1,x2,y1,y2:Point.    (uiff(x1  \mequiv{}  y1;x2  \mequiv{}  y2))  supposing  (y1  \mequiv{}  y2  and  x1  \mequiv{}  x2)
Date html generated:
2016_11_08-AM-09_11_10
Last ObjectModification:
2016_10_31-PM-02_10_45
Theory : inner!product!spaces
Home
Index