Nuprl Lemma : ss-eq_functionality

ss:SeparationSpace. ∀x1,x2,y1,y2:Point.  (uiff(x1 ≡ y1;x2 ≡ y2)) supposing (y1 ≡ y2 and x1 ≡ x2)


Proof




Definitions occuring in Statement :  ss-eq: x ≡ y ss-point: Point separation-space: SeparationSpace uiff: uiff(P;Q) uimplies: supposing a all: x:A. B[x]
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] false: False not: ¬A ss-eq: x ≡ y implies:  Q guard: {T} and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  separation-space_wf ss-point_wf ss-eq_wf ss-sep_wf ss-eq_transitivity ss-eq_inversion
Rules used in proof :  equalitySymmetry equalityTransitivity isect_memberEquality independent_pairEquality productElimination voidElimination isectElimination because_Cache lambdaEquality sqequalRule hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid independent_pairFormation cut introduction isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x1,x2,y1,y2:Point.    (uiff(x1  \mequiv{}  y1;x2  \mequiv{}  y2))  supposing  (y1  \mequiv{}  y2  and  x1  \mequiv{}  x2)



Date html generated: 2016_11_08-AM-09_11_10
Last ObjectModification: 2016_10_31-PM-02_10_45

Theory : inner!product!spaces


Home Index