Nuprl Lemma : ss-eq_transitivity

ss:SeparationSpace. ∀x,y,z:Point.  (x ≡  y ≡  x ≡ z)


Proof




Definitions occuring in Statement :  ss-eq: x ≡ y ss-point: Point separation-space: SeparationSpace all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  false: False or: P ∨ Q uall: [x:A]. B[x] prop: member: t ∈ T not: ¬A ss-eq: x ≡ y implies:  Q all: x:A. B[x]
Lemmas referenced :  ss-sep-symmetry separation-space_wf ss-point_wf ss-eq_wf ss-sep_wf ss-sep-or
Rules used in proof :  voidElimination unionElimination isectElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination extract_by_obid introduction cut sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y,z:Point.    (x  \mequiv{}  y  {}\mRightarrow{}  y  \mequiv{}  z  {}\mRightarrow{}  x  \mequiv{}  z)



Date html generated: 2016_11_08-AM-09_11_08
Last ObjectModification: 2016_10_31-AM-11_13_44

Theory : inner!product!spaces


Home Index