Nuprl Lemma : ss-sep-or
∀ss:SeparationSpace. ∀x,y,z:Point.  (x # y ⇒ (x # z ∨ y # z))
Proof
Definitions occuring in Statement : 
ss-sep: x # y, 
ss-point: Point, 
separation-space: SeparationSpace, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q
Definitions unfolded in proof : 
or: P ∨ Q, 
implies: P ⇒ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
guard: {T}, 
uall: ∀[x:A]. B[x], 
btrue: tt, 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
subtype_rel: A ⊆r B, 
record-select: r.x, 
record+: record+, 
separation-space: SeparationSpace, 
ss-point: Point, 
ss-sep: x # y, 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
separation-space_wf, 
or_wf, 
not_wf, 
all_wf, 
subtype_rel_self
Rules used in proof : 
rename, 
setElimination, 
functionExtensionality, 
because_Cache, 
hypothesisEquality, 
cumulativity, 
lambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
setEquality, 
universeEquality, 
isectElimination, 
extract_by_obid, 
instantiate, 
tokenEquality, 
applyEquality, 
hypothesis, 
cut, 
thin, 
dependentIntersectionEqElimination, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y,z:Point.    (x  \#  y  {}\mRightarrow{}  (x  \#  z  \mvee{}  y  \#  z))
Date html generated:
2016_11_08-AM-09_10_52
Last ObjectModification:
2016_11_02-PM-03_16_07
Theory : inner!product!spaces
Home
Index