Nuprl Lemma : ss-eq_inversion

ss:SeparationSpace. ∀x,y:Point.  (x ≡  y ≡ x)


Proof




Definitions occuring in Statement :  ss-eq: x ≡ y ss-point: Point separation-space: SeparationSpace all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] prop: false: False member: t ∈ T not: ¬A ss-eq: x ≡ y implies:  Q all: x:A. B[x]
Lemmas referenced :  separation-space_wf ss-point_wf ss-eq_wf ss-sep_wf ss-sep-symmetry
Rules used in proof :  isectElimination voidElimination hypothesis hypothesisEquality dependent_functionElimination extract_by_obid cut thin independent_functionElimination introduction sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y:Point.    (x  \mequiv{}  y  {}\mRightarrow{}  y  \mequiv{}  x)



Date html generated: 2016_11_08-AM-09_11_06
Last ObjectModification: 2016_11_02-PM-03_15_49

Theory : inner!product!spaces


Home Index