Nuprl Lemma : ss-eq_inversion
∀ss:SeparationSpace. ∀x,y:Point.  (x ≡ y 
⇒ y ≡ x)
Proof
Definitions occuring in Statement : 
ss-eq: x ≡ y
, 
ss-point: Point
, 
separation-space: SeparationSpace
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
false: False
, 
member: t ∈ T
, 
not: ¬A
, 
ss-eq: x ≡ y
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
separation-space_wf, 
ss-point_wf, 
ss-eq_wf, 
ss-sep_wf, 
ss-sep-symmetry
Rules used in proof : 
isectElimination, 
voidElimination, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
cut, 
thin, 
independent_functionElimination, 
introduction, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y:Point.    (x  \mequiv{}  y  {}\mRightarrow{}  y  \mequiv{}  x)
Date html generated:
2016_11_08-AM-09_11_06
Last ObjectModification:
2016_11_02-PM-03_15_49
Theory : inner!product!spaces
Home
Index