Nuprl Lemma : sq_stable__rleq
∀[x,y:ℝ].  SqStable(x ≤ y)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
real: ℝ, 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rleq: x ≤ y, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
rnonneg: rnonneg(x), 
all: ∀x:A. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
real: ℝ, 
prop: ℙ
Lemmas referenced : 
sq_stable__rnonneg, 
rsub_wf, 
less_than'_wf, 
real_wf, 
nat_plus_wf, 
squash_wf, 
rnonneg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination
Latex:
\mforall{}[x,y:\mBbbR{}].    SqStable(x  \mleq{}  y)
Date html generated:
2016_05_18-AM-07_05_10
Last ObjectModification:
2015_12_28-AM-00_36_02
Theory : reals
Home
Index