Nuprl Lemma : sq_stable__rleq

[x,y:ℝ].  SqStable(x ≤ y)


Proof




Definitions occuring in Statement :  rleq: x ≤ y real: sq_stable: SqStable(P) uall: [x:A]. B[x]
Definitions unfolded in proof :  rleq: x ≤ y uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A false: False subtype_rel: A ⊆B real: prop:
Lemmas referenced :  sq_stable__rnonneg rsub_wf less_than'_wf real_wf nat_plus_wf squash_wf rnonneg_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality dependent_functionElimination productElimination independent_pairEquality because_Cache applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination

Latex:
\mforall{}[x,y:\mBbbR{}].    SqStable(x  \mleq{}  y)



Date html generated: 2016_05_18-AM-07_05_10
Last ObjectModification: 2015_12_28-AM-00_36_02

Theory : reals


Home Index