Nuprl Lemma : sq_stable__rnonneg

[r:ℝ]. SqStable(rnonneg(r))


Proof




Definitions occuring in Statement :  rnonneg: rnonneg(x) real: sq_stable: SqStable(P) uall: [x:A]. B[x]
Definitions unfolded in proof :  rnonneg: rnonneg(x) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] real: so_apply: x[s] implies:  Q all: x:A. B[x] sq_stable: SqStable(P) le: A ≤ B and: P ∧ Q not: ¬A false: False prop:
Lemmas referenced :  sq_stable__all nat_plus_wf le_wf sq_stable__le less_than'_wf squash_wf all_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality minusEquality natural_numberEquality applyEquality setElimination rename hypothesisEquality independent_functionElimination lambdaFormation because_Cache dependent_functionElimination productElimination independent_pairEquality voidElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:\mBbbR{}].  SqStable(rnonneg(r))



Date html generated: 2016_05_18-AM-07_02_34
Last ObjectModification: 2015_12_28-AM-00_34_28

Theory : reals


Home Index