Nuprl Lemma : sq_stable__rnonneg
∀[r:ℝ]. SqStable(rnonneg(r))
Proof
Definitions occuring in Statement : 
rnonneg: rnonneg(x), 
real: ℝ, 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rnonneg: rnonneg(x), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
real: ℝ, 
so_apply: x[s], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
sq_stable: SqStable(P), 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
false: False, 
prop: ℙ
Lemmas referenced : 
sq_stable__all, 
nat_plus_wf, 
le_wf, 
sq_stable__le, 
less_than'_wf, 
squash_wf, 
all_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
minusEquality, 
natural_numberEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
voidElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[r:\mBbbR{}].  SqStable(rnonneg(r))
Date html generated:
2016_05_18-AM-07_02_34
Last ObjectModification:
2015_12_28-AM-00_34_28
Theory : reals
Home
Index