Nuprl Lemma : real-ss-eq
∀[x,y:ℝ].  uiff(x ≡ y;x = y)
Proof
Definitions occuring in Statement : 
real-ss: ℝ
, 
ss-eq: x ≡ y
, 
req: x = y
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
false: False
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
ss-sep: x # y
, 
mk-ss: Point=P #=Sep cotrans=C
, 
ss-eq: x ≡ y
, 
real-ss: ℝ
Lemmas referenced : 
real_wf, 
req_wf, 
req-iff-not-rneq, 
istype-void, 
rneq_wf, 
req_witness, 
not-rneq, 
rec_select_update_lemma
Rules used in proof : 
isectIsTypeImplies, 
isect_memberEquality_alt, 
independent_pairEquality, 
inhabitedIsType, 
functionIsTypeImplies, 
lambdaEquality_alt, 
because_Cache, 
voidElimination, 
productElimination, 
lambdaFormation_alt, 
universeIsType, 
functionIsType, 
independent_functionElimination, 
independent_isectElimination, 
hypothesisEquality, 
isectElimination, 
independent_pairFormation, 
isect_memberFormation_alt, 
hypothesis, 
Error :memTop, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(x  \mequiv{}  y;x  =  y)
Date html generated:
2020_05_20-PM-01_19_50
Last ObjectModification:
2019_12_28-AM-10_59_06
Theory : constructive!algebra
Home
Index