Nuprl Lemma : real-ss-eq

[x,y:ℝ].  uiff(x ≡ y;x y)


Proof




Definitions occuring in Statement :  real-ss: ss-eq: x ≡ y req: y real: uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  false: False prop: not: ¬A implies:  Q uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) uall: [x:A]. B[x] btrue: tt bfalse: ff ifthenelse: if then else fi  eq_atom: =a y member: t ∈ T all: x:A. B[x] ss-sep: y mk-ss: Point=P #=Sep cotrans=C ss-eq: x ≡ y real-ss:
Lemmas referenced :  real_wf req_wf req-iff-not-rneq istype-void rneq_wf req_witness not-rneq rec_select_update_lemma
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt independent_pairEquality inhabitedIsType functionIsTypeImplies lambdaEquality_alt because_Cache voidElimination productElimination lambdaFormation_alt universeIsType functionIsType independent_functionElimination independent_isectElimination hypothesisEquality isectElimination independent_pairFormation isect_memberFormation_alt hypothesis Error :memTop,  thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(x  \mequiv{}  y;x  =  y)



Date html generated: 2020_05_20-PM-01_19_50
Last ObjectModification: 2019_12_28-AM-10_59_06

Theory : constructive!algebra


Home Index