Nuprl Lemma : ss-ap_wf
∀[X,Y:SeparationSpace]. ∀[f:Point(X ⟶ Y)]. ∀[x:Point(X)].  (f(x) ∈ Point(Y))
Proof
Definitions occuring in Statement : 
ss-ap: f(x)
, 
ss-fun: X ⟶ Y
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
ss-ap: f(x)
, 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
ss-fun_wf, 
ss-point_wf, 
ss-fun-point
Rules used in proof : 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
rename, 
setElimination, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
isectElimination, 
extract_by_obid, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X,Y:SeparationSpace].  \mforall{}[f:Point(X  {}\mrightarrow{}  Y)].  \mforall{}[x:Point(X)].    (f(x)  \mmember{}  Point(Y))
Date html generated:
2018_07_29-AM-10_11_46
Last ObjectModification:
2018_07_04-PM-00_03_03
Theory : constructive!algebra
Home
Index