Nuprl Lemma : ss-ap_wf

[X,Y:SeparationSpace]. ∀[f:Point(X ⟶ Y)]. ∀[x:Point(X)].  (f(x) ∈ Point(Y))


Proof




Definitions occuring in Statement :  ss-ap: f(x) ss-fun: X ⟶ Y ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  ss-ap: f(x) top: Top member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-fun_wf ss-point_wf ss-fun-point
Rules used in proof :  because_Cache equalitySymmetry equalityTransitivity axiomEquality hypothesisEquality applyEquality sqequalRule rename setElimination hypothesis voidEquality voidElimination isect_memberEquality thin isectElimination extract_by_obid sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:SeparationSpace].  \mforall{}[f:Point(X  {}\mrightarrow{}  Y)].  \mforall{}[x:Point(X)].    (f(x)  \mmember{}  Point(Y))



Date html generated: 2018_07_29-AM-10_11_46
Last ObjectModification: 2018_07_04-PM-00_03_03

Theory : constructive!algebra


Home Index