Nuprl Lemma : ss-fun_wf

[X,Y:SeparationSpace].  (X ⟶ Y ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  ss-fun: X ⟶ Y separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-ss: Point=P #=Sep symm=Sym cotrans=C fun-ss: A ⟶ ss record-select: r.x ss-point: Point(ss) subtype_rel: A ⊆B so_lambda: λ2x.t[x] ss-fun: X ⟶ Y member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf subtype_rel_self ss-function_wf ss-point_wf fun-ss_wf set-ss_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality functionEquality applyEquality lambdaEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:SeparationSpace].    (X  {}\mrightarrow{}  Y  \mmember{}  SeparationSpace)



Date html generated: 2018_07_29-AM-10_11_37
Last ObjectModification: 2018_07_03-PM-04_47_06

Theory : constructive!algebra


Home Index