Nuprl Lemma : set-ss_wf
∀[ss:SeparationSpace]. ∀[P:Point ⟶ ℙ].  (set-ss(ss;x.P[x]) ∈ SeparationSpace)
Proof
Definitions occuring in Statement : 
set-ss: set-ss(ss;x.P[x]), 
ss-point: Point, 
separation-space: SeparationSpace, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
ss-sep: x # y, 
ss-point: Point, 
uimplies: b supposing a, 
false: False, 
not: ¬A, 
set-ss: set-ss(ss;x.P[x]), 
or: P ∨ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
guard: {T}, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
subtype_rel: A ⊆r B, 
record-select: r.x, 
record+: record+, 
separation-space: SeparationSpace, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
subtype_rel_dep_function, 
set_wf, 
ss-sep-irrefl, 
ss-sep_wf, 
ss-point_wf, 
mk-ss_wf, 
or_wf, 
not_wf, 
all_wf, 
subtype_rel_self
Rules used in proof : 
isect_memberEquality, 
axiomEquality, 
dependent_functionElimination, 
independent_isectElimination, 
voidElimination, 
independent_functionElimination, 
lambdaFormation, 
dependent_set_memberEquality, 
rename, 
setElimination, 
functionExtensionality, 
because_Cache, 
cumulativity, 
lambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
setEquality, 
universeEquality, 
isectElimination, 
extract_by_obid, 
instantiate, 
tokenEquality, 
applyEquality, 
hypothesis, 
thin, 
dependentIntersectionEqElimination, 
sqequalRule, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
hypothesisEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].    (set-ss(ss;x.P[x])  \mmember{}  SeparationSpace)
Date html generated:
2016_11_08-AM-09_12_05
Last ObjectModification:
2016_11_02-AM-11_58_22
Theory : inner!product!spaces
Home
Index