Nuprl Lemma : set-ss_wf

[ss:SeparationSpace]. ∀[P:Point ⟶ ℙ].  (set-ss(ss;x.P[x]) ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  set-ss: set-ss(ss;x.P[x]) ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  ss-sep: y ss-point: Point uimplies: supposing a false: False not: ¬A set-ss: set-ss(ss;x.P[x]) or: P ∨ Q all: x:A. B[x] implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] prop: guard: {T} btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ separation-space: SeparationSpace member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf subtype_rel_dep_function set_wf ss-sep-irrefl ss-sep_wf ss-point_wf mk-ss_wf or_wf not_wf all_wf subtype_rel_self
Rules used in proof :  isect_memberEquality axiomEquality dependent_functionElimination independent_isectElimination voidElimination independent_functionElimination lambdaFormation dependent_set_memberEquality rename setElimination functionExtensionality because_Cache cumulativity lambdaEquality equalitySymmetry equalityTransitivity functionEquality setEquality universeEquality isectElimination extract_by_obid instantiate tokenEquality applyEquality hypothesis thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution hypothesisEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].    (set-ss(ss;x.P[x])  \mmember{}  SeparationSpace)



Date html generated: 2016_11_08-AM-09_12_05
Last ObjectModification: 2016_11_02-AM-11_58_22

Theory : inner!product!spaces


Home Index