Nuprl Lemma : mk-ss_wf
∀[P:Type]. ∀[Sep:{s:P ⟶ P ⟶ ℙ| ∀x:P. (¬(s x x))} ]. ∀[Sym:∀x,y:P.  ((Sep x y) ⇒ (Sep y x))]. ∀[C:∀x,y,z:P.
                                                                                                     ((Sep x y)
                                                                                                     ⇒ ((Sep x z)
                                                                                                        ∨ (Sep y z)))].
  (Point=P
   #=Sep
   symm=Sym
   cotrans=C ∈ SeparationSpace)
Proof
Definitions occuring in Statement : 
mk-ss: mk-ss, 
separation-space: SeparationSpace, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
rev_implies: P ⇐ Q, 
prop: ℙ, 
not: ¬A, 
iff: P ⇐⇒ Q, 
bfalse: ff, 
eq_atom: x =a y, 
top: Top, 
record-select: r.x, 
guard: {T}, 
sq_type: SQType(T), 
ifthenelse: if b then t else f fi , 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
record: record(x.T[x]), 
record-update: r[x := v], 
record+: record+, 
separation-space: SeparationSpace, 
mk-ss: mk-ss, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
set_wf, 
or_wf, 
all_wf, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
not_wf, 
bnot_wf, 
iff_transitivity, 
rec_select_update_lemma, 
subtype_base_sq, 
assert_of_eq_atom, 
eqtt_to_assert, 
atom_subtype_base, 
assert_wf, 
bool_wf, 
equal-wf-base, 
uiff_transitivity, 
eq_atom_wf
Rules used in proof : 
universeEquality, 
rename, 
setElimination, 
functionEquality, 
lambdaEquality, 
axiomEquality, 
equalityEquality, 
impliesFunctionality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
cumulativity, 
instantiate, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
atomEquality, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
hypothesis, 
tokenEquality, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
thin, 
functionExtensionality, 
because_Cache, 
dependentIntersection_memberEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[P:Type].  \mforall{}[Sep:\{s:P  {}\mrightarrow{}  P  {}\mrightarrow{}  \mBbbP{}|  \mforall{}x:P.  (\mneg{}(s  x  x))\}  ].  \mforall{}[Sym:\mforall{}x,y:P.    ((Sep  x  y)  {}\mRightarrow{}  (Sep  y  x))].
\mforall{}[C:\mforall{}x,y,z:P.    ((Sep  x  y)  {}\mRightarrow{}  ((Sep  x  z)  \mvee{}  (Sep  y  z)))].
    (Point=P
      \#=Sep
      symm=Sym
      cotrans=C  \mmember{}  SeparationSpace)
Date html generated:
2016_11_08-AM-09_10_55
Last ObjectModification:
2016_11_02-AM-10_51_54
Theory : inner!product!spaces
Home
Index