Nuprl Lemma : mk-ss_wf

[P:Type]. ∀[Sep:{s:P ⟶ P ⟶ ℙ| ∀x:P. (s x))} ]. ∀[Sym:∀x,y:P.  ((Sep y)  (Sep x))]. ∀[C:∀x,y,z:P.
                                                                                                     ((Sep y)
                                                                                                      ((Sep z)
                                                                                                        ∨ (Sep z)))].
  (Point=P
   #=Sep
   symm=Sym
   cotrans=C ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  mk-ss: mk-ss separation-space: SeparationSpace uall: [x:A]. B[x] prop: all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q prop: not: ¬A iff: ⇐⇒ Q bfalse: ff eq_atom: =a y top: Top record-select: r.x guard: {T} sq_type: SQType(T) ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) subtype_rel: A ⊆B btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] record: record(x.T[x]) record-update: r[x := v] record+: record+ separation-space: SeparationSpace mk-ss: mk-ss member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set_wf or_wf all_wf assert_of_bnot eqff_to_assert iff_weakening_uiff not_wf bnot_wf iff_transitivity rec_select_update_lemma subtype_base_sq assert_of_eq_atom eqtt_to_assert atom_subtype_base assert_wf bool_wf equal-wf-base uiff_transitivity eq_atom_wf
Rules used in proof :  universeEquality rename setElimination functionEquality lambdaEquality axiomEquality equalityEquality impliesFunctionality independent_pairFormation voidEquality voidElimination isect_memberEquality equalitySymmetry equalityTransitivity dependent_functionElimination cumulativity instantiate independent_isectElimination productElimination independent_functionElimination atomEquality applyEquality baseClosed closedConclusion baseApply equalityElimination unionElimination lambdaFormation hypothesis tokenEquality hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid thin functionExtensionality because_Cache dependentIntersection_memberEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[P:Type].  \mforall{}[Sep:\{s:P  {}\mrightarrow{}  P  {}\mrightarrow{}  \mBbbP{}|  \mforall{}x:P.  (\mneg{}(s  x  x))\}  ].  \mforall{}[Sym:\mforall{}x,y:P.    ((Sep  x  y)  {}\mRightarrow{}  (Sep  y  x))].
\mforall{}[C:\mforall{}x,y,z:P.    ((Sep  x  y)  {}\mRightarrow{}  ((Sep  x  z)  \mvee{}  (Sep  y  z)))].
    (Point=P
      \#=Sep
      symm=Sym
      cotrans=C  \mmember{}  SeparationSpace)



Date html generated: 2016_11_08-AM-09_10_55
Last ObjectModification: 2016_11_02-AM-10_51_54

Theory : inner!product!spaces


Home Index