Nuprl Lemma : ss-function_wf
∀[X,Y:SeparationSpace]. ∀[f:Point(X) ⟶ Point(Y)].  (ss-function(X;Y;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
ss-function: ss-function(X;Y;f)
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
ss-function: ss-function(X;Y;f)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
ss-eq_wf, 
ss-point_wf, 
all_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
functionEquality, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X,Y:SeparationSpace].  \mforall{}[f:Point(X)  {}\mrightarrow{}  Point(Y)].    (ss-function(X;Y;f)  \mmember{}  \mBbbP{})
Date html generated:
2018_07_29-AM-10_10_50
Last ObjectModification:
2018_07_03-PM-04_41_53
Theory : constructive!algebra
Home
Index