Nuprl Lemma : fun-ss_wf
∀[ss:SeparationSpace]. ∀[A:Type].  (A ⟶ ss ∈ SeparationSpace)
Proof
Definitions occuring in Statement : 
fun-ss: A ⟶ ss
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
ss-point: Point
, 
ss-sep: x # y
, 
or: P ∨ Q
, 
guard: {T}
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
record-select: r.x
, 
record+: record+, 
separation-space: SeparationSpace
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
fun-sep: fun-sep(ss;A;f;g)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
fun-ss: A ⟶ ss
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
equal_wf, 
or_wf, 
ss-sep_wf, 
subtype_rel_self, 
not_wf, 
all_wf, 
ss-sep-irrefl, 
fun-sep_wf, 
ss-point_wf, 
mk-ss_wf
Rules used in proof : 
isect_memberEquality, 
axiomEquality, 
dependent_functionElimination, 
inrEquality, 
inlEquality, 
unionElimination, 
rename, 
setElimination, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
setEquality, 
universeEquality, 
instantiate, 
tokenEquality, 
dependentIntersectionEqElimination, 
dependentIntersectionElimination, 
dependent_pairEquality, 
productEquality, 
spreadEquality, 
voidElimination, 
independent_functionElimination, 
productElimination, 
lambdaFormation, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
dependent_set_memberEquality, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[A:Type].    (A  {}\mrightarrow{}  ss  \mmember{}  SeparationSpace)
Date html generated:
2016_11_08-AM-09_11_56
Last ObjectModification:
2016_11_02-AM-11_09_02
Theory : inner!product!spaces
Home
Index