Nuprl Lemma : fun-ss_wf

[ss:SeparationSpace]. ∀[A:Type].  (A ⟶ ss ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  fun-ss: A ⟶ ss separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  ss-point: Point ss-sep: y or: P ∨ Q guard: {T} btrue: tt ifthenelse: if then else fi  eq_atom: =a y record-select: r.x record+: record+ separation-space: SeparationSpace subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] prop: exists: x:A. B[x] fun-sep: fun-sep(ss;A;f;g) false: False implies:  Q not: ¬A all: x:A. B[x] fun-ss: A ⟶ ss member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf equal_wf or_wf ss-sep_wf subtype_rel_self not_wf all_wf ss-sep-irrefl fun-sep_wf ss-point_wf mk-ss_wf
Rules used in proof :  isect_memberEquality axiomEquality dependent_functionElimination inrEquality inlEquality unionElimination rename setElimination because_Cache equalitySymmetry equalityTransitivity setEquality universeEquality instantiate tokenEquality dependentIntersectionEqElimination dependentIntersectionElimination dependent_pairEquality productEquality spreadEquality voidElimination independent_functionElimination productElimination lambdaFormation applyEquality functionExtensionality lambdaEquality dependent_set_memberEquality hypothesis hypothesisEquality cumulativity functionEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[A:Type].    (A  {}\mrightarrow{}  ss  \mmember{}  SeparationSpace)



Date html generated: 2016_11_08-AM-09_11_56
Last ObjectModification: 2016_11_02-AM-11_09_02

Theory : inner!product!spaces


Home Index