Nuprl Lemma : fun-sep_wf
∀[A:Type]. ∀[ss:SeparationSpace]. ∀[f,g:A ⟶ Point].  (fun-sep(ss;A;f;g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
fun-sep: fun-sep(ss;A;f;g)
, 
ss-point: Point
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
fun-sep: fun-sep(ss;A;f;g)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
ss-point_wf, 
ss-sep_wf, 
exists_wf
Rules used in proof : 
universeEquality, 
because_Cache, 
isect_memberEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:Type].  \mforall{}[ss:SeparationSpace].  \mforall{}[f,g:A  {}\mrightarrow{}  Point].    (fun-sep(ss;A;f;g)  \mmember{}  \mBbbP{})
Date html generated:
2016_11_08-AM-09_11_47
Last ObjectModification:
2016_11_02-AM-10_23_26
Theory : inner!product!spaces
Home
Index