Nuprl Lemma : fun-sep_wf

[A:Type]. ∀[ss:SeparationSpace]. ∀[f,g:A ⟶ Point].  (fun-sep(ss;A;f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  fun-sep: fun-sep(ss;A;f;g) ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] fun-sep: fun-sep(ss;A;f;g) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-point_wf ss-sep_wf exists_wf
Rules used in proof :  universeEquality because_Cache isect_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis functionExtensionality applyEquality lambdaEquality hypothesisEquality cumulativity thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:Type].  \mforall{}[ss:SeparationSpace].  \mforall{}[f,g:A  {}\mrightarrow{}  Point].    (fun-sep(ss;A;f;g)  \mmember{}  \mBbbP{})



Date html generated: 2016_11_08-AM-09_11_47
Last ObjectModification: 2016_11_02-AM-10_23_26

Theory : inner!product!spaces


Home Index