Nuprl Lemma : ss-fun-point
∀[X,Y:Top].  (Point(X ⟶ Y) ~ {f:Point(X) ⟶ Point(Y)| ss-function(X;Y;f)} )
Proof
Definitions occuring in Statement : 
ss-fun: X ⟶ Y
, 
ss-function: ss-function(X;Y;f)
, 
ss-point: Point(ss)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
ss-function: ss-function(X;Y;f)
, 
fun-ss: A ⟶ ss
, 
btrue: tt
, 
bfalse: ff
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
record-update: r[x := v]
, 
mk-ss: Point=P #=Sep symm=Sym cotrans=C
, 
set-ss: {x:ss | P[x]}
, 
ss-fun: X ⟶ Y
, 
record-select: r.x
, 
ss-point: Point(ss)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalAxiom, 
hypothesis, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X,Y:Top].    (Point(X  {}\mrightarrow{}  Y)  \msim{}  \{f:Point(X)  {}\mrightarrow{}  Point(Y)|  ss-function(X;Y;f)\}  )
Date html generated:
2018_07_29-AM-10_11_39
Last ObjectModification:
2018_07_04-AM-11_56_59
Theory : constructive!algebra
Home
Index