Nuprl Lemma : ss-fun-point

[X,Y:Top].  (Point(X ⟶ Y) {f:Point(X) ⟶ Point(Y)| ss-function(X;Y;f)} )


Proof




Definitions occuring in Statement :  ss-fun: X ⟶ Y ss-function: ss-function(X;Y;f) ss-point: Point(ss) uall: [x:A]. B[x] top: Top set: {x:A| B[x]}  function: x:A ⟶ B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] ss-function: ss-function(X;Y;f) fun-ss: A ⟶ ss btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-ss: Point=P #=Sep symm=Sym cotrans=C set-ss: {x:ss P[x]} ss-fun: X ⟶ Y record-select: r.x ss-point: Point(ss) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  top_wf
Rules used in proof :  because_Cache hypothesisEquality thin isectElimination isect_memberEquality sqequalHypSubstitution extract_by_obid sqequalAxiom hypothesis sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:Top].    (Point(X  {}\mrightarrow{}  Y)  \msim{}  \{f:Point(X)  {}\mrightarrow{}  Point(Y)|  ss-function(X;Y;f)\}  )



Date html generated: 2018_07_29-AM-10_11_39
Last ObjectModification: 2018_07_04-AM-11_56_59

Theory : constructive!algebra


Home Index