Nuprl Lemma : req-iff-rsub-is-0

[a,b:ℝ].  uiff(a b;(a b) r0)


Proof




Definitions occuring in Statement :  rsub: y req: y int-to-real: r(n) real: uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: rev_uimplies: rev_uimplies(P;Q) rsub: y
Lemmas referenced :  req_witness rsub_wf int-to-real_wf req_wf real_wf radd-preserves-req radd_wf rminus_wf uiff_transitivity req_functionality radd-ac radd_comm radd_functionality radd-rminus-both req_weakening radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality independent_functionElimination sqequalRule productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[a,b:\mBbbR{}].    uiff(a  =  b;(a  -  b)  =  r0)



Date html generated: 2017_10_02-PM-07_20_44
Last ObjectModification: 2017_07_28-AM-07_21_39

Theory : reals


Home Index