Nuprl Lemma : req-iff-rsub-is-0
∀[a,b:ℝ].  uiff(a = b;(a - b) = r0)
Proof
Definitions occuring in Statement : 
rsub: x - y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rsub: x - y
Lemmas referenced : 
req_witness, 
rsub_wf, 
int-to-real_wf, 
req_wf, 
real_wf, 
radd-preserves-req, 
radd_wf, 
rminus_wf, 
uiff_transitivity, 
req_functionality, 
radd-ac, 
radd_comm, 
radd_functionality, 
radd-rminus-both, 
req_weakening, 
radd-zero-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
independent_functionElimination, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}[a,b:\mBbbR{}].    uiff(a  =  b;(a  -  b)  =  r0)
Date html generated:
2017_10_02-PM-07_20_44
Last ObjectModification:
2017_07_28-AM-07_21_39
Theory : reals
Home
Index