Nuprl Lemma : radd-ac

[a,b,c:ℝ].  ((a c) (b c))


Proof




Definitions occuring in Statement :  req: y radd: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  req_witness radd_assoc iff_weakening_equal radd_comm_eq radd_wf real_wf true_wf squash_wf req_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination lemma_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination isect_memberEquality

Latex:
\mforall{}[a,b,c:\mBbbR{}].    ((a  +  b  +  c)  =  (b  +  a  +  c))



Date html generated: 2016_05_18-AM-06_51_23
Last ObjectModification: 2016_01_17-AM-01_46_12

Theory : reals


Home Index