Nuprl Lemma : radd-ac
∀[a,b,c:ℝ].  ((a + b + c) = (b + a + c))
Proof
Definitions occuring in Statement : 
req: x = y
, 
radd: a + b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
req_witness, 
radd_assoc, 
iff_weakening_equal, 
radd_comm_eq, 
radd_wf, 
real_wf, 
true_wf, 
squash_wf, 
req_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[a,b,c:\mBbbR{}].    ((a  +  b  +  c)  =  (b  +  a  +  c))
Date html generated:
2016_05_18-AM-06_51_23
Last ObjectModification:
2016_01_17-AM-01_46_12
Theory : reals
Home
Index