Nuprl Lemma : radd_comm_eq
∀[a,b:ℝ].  ((a + b) = (b + a) ∈ ℝ)
Proof
Definitions occuring in Statement : 
radd: a + b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
true: True
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
radd-list_functionality_wrt_permutation, 
cons_wf, 
real_wf, 
nil_wf, 
permutation-swap-first2, 
equal_wf, 
squash_wf, 
true_wf, 
radd-as-radd-list, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
because_Cache, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
natural_numberEquality, 
extract_by_obid, 
independent_isectElimination, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[a,b:\mBbbR{}].    ((a  +  b)  =  (b  +  a))
Date html generated:
2017_10_02-PM-07_15_26
Last ObjectModification:
2017_07_28-AM-07_20_29
Theory : reals
Home
Index