Nuprl Lemma : radd_comm_eq

[a,b:ℝ].  ((a b) (b a) ∈ ℝ)


Proof




Definitions occuring in Statement :  radd: b real: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T true: True uimplies: supposing a all: x:A. B[x] squash: T prop: subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  radd-list_functionality_wrt_permutation cons_wf real_wf nil_wf permutation-swap-first2 equal_wf squash_wf true_wf radd-as-radd-list iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis because_Cache sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality natural_numberEquality extract_by_obid independent_isectElimination dependent_functionElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[a,b:\mBbbR{}].    ((a  +  b)  =  (b  +  a))



Date html generated: 2017_10_02-PM-07_15_26
Last ObjectModification: 2017_07_28-AM-07_20_29

Theory : reals


Home Index