Nuprl Lemma : permutation-swap-first2

[A:Type]. ∀x,y:A. ∀L:A List.  permutation(A;[x; [y L]];[y; [x L]])


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q exists: x:A. B[x] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] cand: c∧ B uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  permutation-cons cons_wf nil_wf list_ind_cons_lemma list_ind_nil_lemma permutation_weakening and_wf equal_wf list_wf permutation_wf exists_wf append_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality hypothesis productElimination independent_functionElimination dependent_pairFormation sqequalRule isect_memberEquality voidElimination voidEquality independent_pairFormation independent_isectElimination lambdaEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}x,y:A.  \mforall{}L:A  List.    permutation(A;[x;  [y  /  L]];[y;  [x  /  L]])



Date html generated: 2016_05_14-PM-02_32_02
Last ObjectModification: 2015_12_26-PM-04_22_47

Theory : list_1


Home Index