Nuprl Lemma : radd-as-radd-list

[a,b:ℝ].  ((a b) radd-list([a; b]) ∈ ℝ)


Proof




Definitions occuring in Statement :  radd: b radd-list: radd-list(L) real: cons: [a b] nil: [] uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T radd-list: radd-list(L) uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) length: ||as|| list_ind: list_ind cons: [a b] nil: [] it: all: x:A. B[x] top: Top eq_int: (i =z j) ifthenelse: if then else fi  bfalse: ff radd: b
Lemmas referenced :  valueall-type-has-valueall list_wf real_wf list-valueall-type real-valueall-type cons_wf nil_wf evalall-reduce valueall-type-real-list length_of_cons_lemma length_of_nil_lemma radd_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce sqleReflexivity dependent_functionElimination isect_memberEquality voidElimination voidEquality axiomEquality because_Cache

Latex:
\mforall{}[a,b:\mBbbR{}].    ((a  +  b)  =  radd-list([a;  b]))



Date html generated: 2016_05_18-AM-06_50_58
Last ObjectModification: 2015_12_28-AM-00_29_14

Theory : reals


Home Index