Nuprl Lemma : radd-as-radd-list
∀[a,b:ℝ].  ((a + b) = radd-list([a; b]) ∈ ℝ)
Proof
Definitions occuring in Statement : 
radd: a + b
, 
radd-list: radd-list(L)
, 
real: ℝ
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
radd-list: radd-list(L)
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
length: ||as||
, 
list_ind: list_ind, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
radd: a + b
Lemmas referenced : 
valueall-type-has-valueall, 
list_wf, 
real_wf, 
list-valueall-type, 
real-valueall-type, 
cons_wf, 
nil_wf, 
evalall-reduce, 
valueall-type-real-list, 
length_of_cons_lemma, 
length_of_nil_lemma, 
radd_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
callbyvalueReduce, 
sqleReflexivity, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[a,b:\mBbbR{}].    ((a  +  b)  =  radd-list([a;  b]))
Date html generated:
2016_05_18-AM-06_50_58
Last ObjectModification:
2015_12_28-AM-00_29_14
Theory : reals
Home
Index