Nuprl Lemma : real-valueall-type

valueall-type(ℝ)


Proof




Definitions occuring in Statement :  real: valueall-type: valueall-type(T)
Definitions unfolded in proof :  real: uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a exists: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop:
Lemmas referenced :  value-type_wf int-value-type less_than_wf function-valueall-type regular-int-seq_wf nat_plus_wf set-valueall-type
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis intEquality lambdaEquality natural_numberEquality hypothesisEquality independent_isectElimination dependent_pairFormation dependent_set_memberEquality independent_pairFormation introduction imageMemberEquality baseClosed

Latex:
valueall-type(\mBbbR{})



Date html generated: 2016_05_18-AM-06_48_03
Last ObjectModification: 2016_01_17-AM-01_45_06

Theory : reals


Home Index