Nuprl Lemma : radd_comm

[a,b:ℝ].  ((a b) (b a))


Proof




Definitions occuring in Statement :  req: y radd: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf real_wf radd_comm_eq radd_wf iff_weakening_equal req_weakening req_wf req_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache hyp_replacement applyLambdaEquality isect_memberEquality

Latex:
\mforall{}[a,b:\mBbbR{}].    ((a  +  b)  =  (b  +  a))



Date html generated: 2017_10_02-PM-07_15_28
Last ObjectModification: 2017_07_28-AM-07_20_31

Theory : reals


Home Index