Nuprl Lemma : radd-preserves-req

[x,y,z:ℝ].  uiff(x y;(z x) (z y))


Proof




Definitions occuring in Statement :  req: y radd: b real: uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  prop: implies:  Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  real_wf req_wf req_witness req_weakening radd_functionality radd_wf req_functionality rminus_wf rmul_wf int-to-real_wf uiff_transitivity req_transitivity rminus-as-rmul radd-assoc req_inversion rmul-identity1 rmul-distrib2 rmul_functionality radd-int rmul-zero-both radd-zero-both
Rules used in proof :  equalitySymmetry equalityTransitivity isect_memberEquality independent_pairEquality sqequalRule independent_functionElimination productElimination independent_isectElimination because_Cache hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution minusEquality natural_numberEquality addEquality

Latex:
\mforall{}[x,y,z:\mBbbR{}].    uiff(x  =  y;(z  +  x)  =  (z  +  y))



Date html generated: 2017_10_02-PM-07_17_40
Last ObjectModification: 2017_07_28-AM-07_21_15

Theory : reals


Home Index