Nuprl Lemma : radd-preserves-req
∀[x,y,z:ℝ].  uiff(x = y;(z + x) = (z + y))
Proof
Definitions occuring in Statement : 
req: x = y
, 
radd: a + b
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
prop: ℙ
, 
implies: P 
⇒ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
real_wf, 
req_wf, 
req_witness, 
req_weakening, 
radd_functionality, 
radd_wf, 
req_functionality, 
rminus_wf, 
rmul_wf, 
int-to-real_wf, 
uiff_transitivity, 
req_transitivity, 
rminus-as-rmul, 
radd-assoc, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
rmul_functionality, 
radd-int, 
rmul-zero-both, 
radd-zero-both
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
independent_pairEquality, 
sqequalRule, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
minusEquality, 
natural_numberEquality, 
addEquality
Latex:
\mforall{}[x,y,z:\mBbbR{}].    uiff(x  =  y;(z  +  x)  =  (z  +  y))
Date html generated:
2017_10_02-PM-07_17_40
Last ObjectModification:
2017_07_28-AM-07_21_15
Theory : reals
Home
Index