Nuprl Lemma : rminus-as-rmul

[r:ℝ]. (-(r) (r(-1) r))


Proof




Definitions occuring in Statement :  req: y rmul: b rminus: -(x) int-to-real: r(n) real: uall: [x:A]. B[x] minus: -n natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q subtype_rel: A ⊆B real: bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: all: x:A. B[x] int-to-real: r(n) reg-seq-mul: reg-seq-mul(x;y) rminus: -(x) so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sq_type: SQType(T) guard: {T} int_nzero: -o nequal: a ≠ b ∈  absval: |i| subtract: m
Lemmas referenced :  zero-mul add-mul-special add-commutes minus-one-mul minus-minus nat_wf nequal_wf equal_wf int_formula_prop_less_lemma int_formula_prop_and_lemma intformless_wf intformand_wf div-cancel int_formula_prop_wf int_term_value_minus_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermMinus_wf itermVar_wf itermConstant_wf itermMultiply_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_plus_properties int_subtype_base subtype_base_sq rmul-bdd-diff-reg-seq-mul bdd-diff_weakening bdd-diff_functionality subtract_wf absval_wf all_wf nat_plus_wf le_wf false_wf reg-seq-mul_wf real_wf req_witness int-to-real_wf rmul_wf rminus_wf req-iff-bdd-diff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis minusEquality natural_numberEquality productElimination independent_isectElimination independent_functionElimination applyEquality lambdaEquality setElimination rename sqequalRule because_Cache dependent_pairFormation dependent_set_memberEquality independent_pairFormation lambdaFormation dependent_functionElimination instantiate unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry multiplyEquality

Latex:
\mforall{}[r:\mBbbR{}].  (-(r)  =  (r(-1)  *  r))



Date html generated: 2016_05_18-AM-06_52_32
Last ObjectModification: 2016_01_17-AM-01_46_57

Theory : reals


Home Index