Nuprl Lemma : div-cancel
∀[x:ℤ]. ∀[y:ℤ-o].  ((x * y) ÷ y ~ x)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
multiply: n * m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
top: Top
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
mul-commutes, 
divide-exact, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
intEquality
Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[y:\mBbbZ{}\msupminus{}\msupzero{}].    ((x  *  y)  \mdiv{}  y  \msim{}  x)
Date html generated:
2016_05_14-AM-07_24_10
Last ObjectModification:
2015_12_26-PM-01_29_41
Theory : int_2
Home
Index