Nuprl Lemma : div-cancel

[x:ℤ]. ∀[y:ℤ-o].  ((x y) ÷ x)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] divide: n ÷ m multiply: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T}
Lemmas referenced :  subtype_base_sq int_subtype_base mul-commutes divide-exact int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis sqequalRule hypothesisEquality isect_memberEquality voidElimination voidEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom intEquality

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[y:\mBbbZ{}\msupminus{}\msupzero{}].    ((x  *  y)  \mdiv{}  y  \msim{}  x)



Date html generated: 2016_05_14-AM-07_24_10
Last ObjectModification: 2015_12_26-PM-01_29_41

Theory : int_2


Home Index