Nuprl Lemma : rmul_wf

[a,b:ℝ].  (a b ∈ ℝ)


Proof




Definitions occuring in Statement :  rmul: b real: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rmul: b has-value: (a)↓ nat_plus: + real: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False subtype_rel: A ⊆B guard: {T} uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  real-has-value accelerate_wf imax_wf absval_wf decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than add_nat_plus imax_nat nat_plus_properties add-is-int-iff intformand_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma false_wf reg-seq-mul_wf2 real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality_alt addEquality applyEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination universeIsType because_Cache inhabitedIsType lambdaFormation_alt equalityTransitivity equalitySymmetry applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination int_eqEquality independent_pairFormation equalityIstype axiomEquality isectIsTypeImplies

Latex:
\mforall{}[a,b:\mBbbR{}].    (a  *  b  \mmember{}  \mBbbR{})



Date html generated: 2019_10_16-PM-03_06_56
Last ObjectModification: 2019_01_31-PM-04_50_20

Theory : reals


Home Index